Main Article Content
Abstract
The happiness index is a parameter used to measure the level of happiness and well-being of people in a particular country or region. This research aims to determine the factors that contribute to people's happiness. In terms of modelling, this study will compare several regressions modelling using machine learning, including regression trees, random forests and Support Vector Regression (SVR). The SVR model has a minor error value in terms of MSE, RMSE and MAE compared to the other three models. The same thing happened when viewed from the value of R2 that the SVR model has an enormous value. This result indicates that SVR modelling is the best of the four models. A comprehensive policy is needed to increase a country's happiness index.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Basak, D., Pal, S., & Patranabis, D. C. (2207). Support vector regression. Neural Information Processing-Letters and Reviews, 11(10), 203–224.
Cutler, D. R., Edwards Jr, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 88(11), 2783–2792.
Fachid, S., & Triayudi, A. (2022). Perbandingan Algoritma Regresi Linier dan Regresi Random Forest Dalam Memprediksi Kasus Positif Covid-19. Jurnal Media Informatika Budidarma, 6(1), 68. https://doi.org/10.30865/mib.v6i1.3492
Graham, C., & Nikolova, M. (2020). Bentham or Aristotle in the Development Process? An Empirical Investigation of the Relationship between Subjective Well-being and Economic Development.
Gujarati, D. (2004). Basic Econometrics BY Gujarati (pp. 1–1002). McGraw-Hill Inc.
Hastie, T., Tibshirani, R., & Friedman, J. (2009a). The elements of statistical learning: data mining, inference, and prediction. Springer.
Hastie, T., Tibshirani, R., & Friedman, J. (2009b). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.
Helliwell, J., Layard, R., & Sachs, J. (2020). World Happiness Report 2020.
Kaggle. (2019). World Happiness Report. https://www.kaggle.com/datasets/unsdsn/world-happiness
Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222.
Sugiyono. (2019). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Alphabet.
Supriyanto, H. (2022). Perbandingan Metode Supervised Learning Untuk Peramalan Time Series Pada Kunjungan Pasien Rawat jalan. Junal SimanteC, 10(2), 67–76.