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ABSTRAK

The research explores the ARIMA-OC method (ARIMA based on the Optimal
Combination approach) for Hierarchical Forecasting. In this approach, the
ARIMA model is used to forecast each individual time series, and the Opti-
mal Combination (OC) technique is applied to merge these initial forecasts
into an updated set of predictions. The study compares the ARIMA model
with the Exponential Tail Smoothing (ETS) model, with both models being
integrated using five different strategies: the Bottom-up approach (BU), the
Top-down approach using Forecasted Proportion (TDFP), two Top-down
approaches based on Historical Proportions (TDHP1 and TDHP2), and the
Optimal Combination approach (OC). To assess how ARIMA-OC performs
with small samples, a simulation was carried out, revealing that ARIMA-OC
surpasses the other methods according to the MASE metric. Furthermore,
non-parametric tests like the Friedman test and the Nemenyi post-hoc test
were used to validate the effectiveness of Hierarchical Forecasting.

Keyword: The ARIMA-OC; The Friedman test the MASE; The Nemenyi-
post-hoc test

Introduction

organized in a hierarchical manner. A consider-

Over the last forty years, the tourism sector
has seen remarkable expansion and has gar-
nered considerable attention from both the
business world and academic researchers
(Waciko, K.J & Ismail, B, 2019). This growth has
led to a heightened focus on modeling and fore-
casting tourism demand. The most widely used
indicator of tourism demand is the count of
tourist arrivals at a particular destination. Hi-
erarchical forecasting, an advanced forecasting
technique, deals with a set of time series
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able number of studies have utilized hierar-
chical forecasting, particularly in analyzing
tourism demand. Hyndman et al. (2007)
demonstrated that their optimal combination
approach performed better than other existing
methods for handling hierarchical data. Simi-
larly, Athanasopoulos and Hyndman (2007)
demonstrated the value of hierarchical fore-
casting by generating extended forecasts for
domestic tourism demand in Australia.
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and handle credit risk more quickly and ac-
curately. The use of machine learning algo-
rithms enables faster and more precise deci-
sion-making. In a study conducted by
Kosiorowski et al. (2017) in Poland’s Silesia re-
gion, a macro model was developed to assess
air pollution during both day and night across
five subregions. The researchers evaluated the
effectiveness of hierarchical time series fore-
casting in enhancing local community welfare
and introduced a new nonparametric, robust
method for forecasting hierarchical functional
time series.

Athanasopoulos et al. (2017) presented the
idea of Temporal Hierarchies for time series
forecasting, which involves building a temporal
hierarchy using non-overlapping time aggrega-
tions and merging forecasts from all levels to
produce accurate and consistent results. In an-
other study, Mircetic et al. (2017) proposed a
revised top-down approach for hierarchical
forecasting within a beverage supply chain.

Athanasopoulos et al. (2009) applied Hier-
archical Forecasting to the tourism sector, gen-
erating long-term forecasts for domestic tour-
ism demand in Australia. Their results aligned
with those of Hyndman et al. (2011), who intro-
duced an optimal combination method that
surpassed other hierarchical data techniques.
Both studies exclusively used Exponential Tail
Smoothing (ETS) with the optimal combination
approach (ETS-0C), which proved more effec-
tive than alternative methods.

Waciko and Ismail (2020) noted that ad-
vanced quantitative models have been widely
developed in academic research. Both practi-
tioners and statisticians are interested in de-
signing advanced hybrid models to boost pre-
diction accuracy. However, there remains a
need for dedicated research into the applica-
tion of hierarchical forecasting for tourist arri-
vals and the development of suitable test statis-
tics to confirm the effectiveness of hierarchical
forecasting methods.

Methods

The time series {xt,t € I} is considered to
follow an ARIMA(p,q) process, if it can be ex-
pressed as,
N =%, 0%t P e 06, 106, .40 (1)

With ¢ #0,0, =0, c’>0, pand q are
called AR and MA orders, respectively. If x, has
anonzeromean M, set a=pu(l—¢ —...—¢,)
and the model can be written as,

X=atdx  thx, tutgx te t0e 0, +. 10, 2)
where, the noise ¢, is assumed to be Gauss-
ian white noise with mean zero and variance
0'82. the model is called AR(p) when ¢ =0 and
the model is called MA(q) when p =0 (Shum-
way and Stoffer, 2006).
AR operator is defined to be

$(B)=1-$B-¢,B" ~..—¢,B 3)

Is a polynomial in B of order p and MA op-
erator is

0(B)=1+6,B+6,B* +..+6 B’ (4)

Unlike AR process, MA process is stationary
for any values of the parameters 6,,6,,..., 0, .
The ARMA(p,q) model in (5) can be written us-
ing the AR operator (3), and the MA operator
(4) in a concise form as,

HB)x, = 0(B)e, (5)

Box and Jenkins (1970) develop ARIMA
models. Many time series models such as AR,
MA or ARMA cannot be specifically applied be-
cause of non-stationary. To make them station-
ary, one possible way to treat the non-station-
ary series is to apply differencing.  The first
differences, namely (x, —x,_, ) =(1-B)x, To
offer second differences, and so on. The d th
differences can be writtenas (1—B)? X,.

If the original data series is differenced d
times before applying an ARMA (p,q) mode],
then the resulting model for the undifferenced
series is called an ARIMA (p,d,q) process where
the letter “I” stands for integrated, and d indi-
cates the number of differences performed.
Model (5) Model (5) can be extended as follows,

#(B)Y1-B)"x, =O(B)s, (6)

The combined AR operator is now
#(B)(1—B)". Suppose substitute the operator
B with a variable x in this expression, in that
case, it can be immediately shown that the
function @(x)(1—x)? has d roots on the unit
circle (as (1-x)=0 when x=1) suggesting
that the mechanism is non-stationary, which is
why differentiation is required.
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In this research, a novel approach for hier-
archical time series forecasting called ARIMA-
OC (ARIMA based on the Optimal Combination
method) was introduced. The ARIMA model (6)
is applied to forecast each individual series,
while the Optimal Combination technique is
used to optimally merge these base forecasts,
resulting in a set of updated forecasts.

Suppose Z, ,(h) the generated h-step
ahead forecasts for each individual series (us-
ing the ARIMA model) are represented as fol-
lows Z, (ARIMA model), Z,, (h) repre-
sents the h-step-ahead base forecast of series
AB generated by the ARIMA model, Z ,, using
the sample data Z ; ..., Z ;, atlevel i. All h-
step ahead base forecasts are collectively de-
noted as Z,,(h). These forecasts depend on
the sample value for ¢=12,...,n, therefore
correspond to predictions for time n+ /4. The
core idea of the Optimal Combination (OC) ap-
proach is to express these h-step-ahead base
forecasts within a hierarchy using a linear re-
gression framework.

Z,(h)=Mp, +é, (7)

Where p, =EZAK’n(h) ‘ Zl,...,ZnJ is the
unknown mean of the base forecasts at the bot-
tom level is represented K, and &, has zero
mean and covariance matrix V[gh]:Zh. If X,
is known, the Generalized Least Squares (GLS)
method can be used to obtain the minimum
variance unbiased estimate of /3, . Typically,
this matrix is not known, but Hyndman et al.
(2017) demonstrated that, under the reasona-
ble assumption that &, ~ Mg, , where &,
contains the forecast errors in the bottom level,
the best llnear unbiased estimator for f, is
ﬁh (MM) M7 ,(h). This leads to the re-
vised forecasts given by Z” (h)= Mﬂh and
This results in revised forecasts, which can be
generally expressed as shown in equation (8),
can written as,

Z,(h) = MPZ, (h) (8)

P varies depending on the hierarchical method
used.
P=(MM)"'M' 9)
The MASE is used as measures to compare
forecast performance.

1 le]
MASE = - . | ————— 10
nZt—l <—2 2| Zt—Z¢— 1|> (10)

Where e, = Z, — Z, is the forecast error is
represented as the difference between the ac-
tual value and the forecasted value, Z; is the ac-
tual value, Z, The forecast value and n refers to
the length of the forecasting horizon or the size
of the test set. (Waciko, K.J and Ismail, B, 2018).
In this research, suitable statistical tests like
the Friedman test and the Nemenyi post-hoc
test (applied after the Friedman test) are used
to validate the results of Hierarchical Forecast-
ing. Friedman test (Friedman, 1937, 1940) is an
alternative to the one-way ANOVA with re-
peated measures. Data should be atleast an or-
dinal or continuous and samples are do not
need to be normally distributed. The Friedman
statistic S can be represented as,

12 k
S=|—" 3R |-3n(k +1)
nk(k +1) 75
(11)
The procedure for testing the null hypothesis,
Hy:t,=..=1,
versus
H, :7,,..,7, notall equal

at the o level of significance,
Reject H,if S=s,;
otherwise do not reject (12)

Where the constant s/, is selected to create
the type I error probability equal to «. For de-
tail see in Hollander and Wolfe (1999).

The Nemenyi post-hoc test, following the
Friedman test, requires a balanced design
(n,=n,=...=n, =n) for each group k and
o Friedman-type ranking of the data. The ine-
quality applied in this study was derived from
Nemenyi (1969), where the critical difference
represents the difference between the mean
rank sums (‘R RJ ‘):

9o |k(k+1)
\/5 6n

This inequality results in the same critical
differences for the rank sums (|R, —RJ.‘) when
it is multiplied with »n for = 0.05.

(13)
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This research examines hierarchical time
series methods applied to international tourist
arrivals in Indonesia. The data consists of
monthly records of tourist arrivals for each se-
ries, covering the period from January 2014 to
December 2018. The data was obtained from

the Ministry of Tourism of the Republic of Indo-
nesia (www.kemenparekraf.go.id). Within a hi-
erarchy, data and forecasts are organized by
breaking down the information for various ge-
ographical regions and provinces.

FB‘

Figure. 1 A Hierarchical Time Series Tourist Arrival in Indonesia

Figure 1 illustrates K =2 —level hierarchy
structure. At the highest level (level 0) is the
“Total,” representing the most aggregated data.
This total is divided into two series at level 1,
and each of these series is further subdivided
into two additional series at the lowest level.

Nomenclature for Hierarchical Time Series

Tourist Arrival in Indonesia

Total = Disaggregated data of International

Tourist arrival to Indonesia.

A= Series A-level 1 (Bali & Nusa Tenggara Re-

gion)

B= Series B-level 1 (Sumatra Region).

C= Series C-level 1 (Java Region).

D= Series D-level 1 (Kalimantan Region).

E= Series E-level 1 (Sulawesi Region).

F= Series F-level 1 (Maluku & Papua Region).

AA= Series A-level 2 within series A-level 1
(Province of Bali).

AB=refers to Series B-level 2, which is a subdi-
vision of Series A-level 1 (all province in
Bali & Nusa Tenggara Region excluding the
province of Bali).

BA= refers to Series A-level 2, which is a subdi-
vision of Series B-level 1 (Province of
Kepulauan Riau).

BB= refers to Series B-level 2, which is a subdi-
vision of Series B-level 1 (all province in
Sumatra Region excluding the province of
Kepulauan Riau).

CA=refers to Series C-level 2, which is a subdi-
vision of Series A-level 1 (Province of East
Java).

CB= refers to Series B-level 2, which is a subdi-
vision of Series C-level 1 (all province in
Java Region excluding Province of East
Java).

DA= refers to Series D-level 2, which is a subdi-
vision of Series D-level 1 (Province of West
Kalimantan).

DB= refers to Series B-level 2, which is a subdi-
vision of Series D-level 1 (all Province in
Kalimantan Region excluding the province
of West Kalimantan).

EA= refers to Series A-level 2, which is a subdi-
vision of Series E-level 1 (Province of
North Sulawesi).

EB= refers to Series B-level 2, which is a subdi-
vision of Series E-level 1 (all province in
Sulawesi Region excluding province of
North Sulawesi).

FA=refers to Series A-level 2, which is a subdi-
vision of Series F-level 1 (Province of Ma-
luku).

FB= refers to Series B-level 2, which is a subdi-
vision of Series F-level 1 (all province in
Maluku & Papua Region excluding Province
of Maluku)

n = Total number of series in the hierarchy;

Z,=The t th observation for “Total” series for t

=1..,T;
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Z; =vector of all observations at time ¢;

Z,,=The t th observation of the series corre-
sponds to and j represents a specific ele-
ment within the hierarchical tree. For In-
stance, ZA,, denotes the t th observation of
the series associated with node A at level
1, Z 5, while denotes the ¢ th observation
of the series linked to node AB at level 2,
and forth.

Atany given time t, the values at the lowest
level of the hierarchy add up to the value of
the series at the level above. For example, as
shown in,

2,=2 * Ly ALyt gy ALy Y Ly YLy, L

AA AB.t BAt BB.t CAt CB.t DAt DB.t EAt EBt FAt

Where,

L, =Ly, +Z
ZBJ::Z&M'+ZE&6
Zc,z = ZCA,t + ZCB,t;
ZDJ::ZDM_+ZD&”
Ly, =Ly + L,
ZfJ::ZﬁLz+;Znu;

Thus, it can be written as,

Ly=Ly N Ly, F Lo, + Ly, + Ly, + Ly,
This relationship can be expressed using ma-
trix notation.

U

ARIMA-BU

ARIMA-TDFP

ARIMA-TDHP1

ARIMA-TDHP2

ARIMA-OC

+Zp AL A, L

FB.t

Compared Forecast

Z,]JMnmi11111111111]
Z,f |11 0000000000
Z,, |00 11 000000O0 O
Z,| 000011000000
Z, j00 0000110000
Z, (00000000 110 0"
Z, joo 000000001 10"
z,, 100000000000~
Zuo {001 000000000 0f>"
Zy,|=[00 100000000 0™
Zo 00010000000 0"
Z.,| 000010000000 ™
Zuo| (000000100000 0f
Zoo| 00000010000 0f ™
Zu, 00000001000 0"
Zo,/ 00000000100 oL7™
Ze,/ (00O 000 O0O0O0CO0CTL OO
Zo./ 00000 0O0O0O0CO0TI1 O
|Zn.] (000 000 000O0GOCO0O 1]

Figure 2 presents the framework of the pro-
posed study, which begins by comparing the
ARIMA model with the Exponential Tail
Smoothing (ETS) model. Both models are then
combined with five different hierarchical fore-
casting approaches: the Bottom-Up (BU) ap-
proach, the Top-Down approach based on
Forecasted Proportions (TDFP), the Top-Down
approach using Average Historical Proportions
or Historical Proportion 1 (TDHP1), the Top-
Down approach using Proportions of Historical
Averages or Historical Proportion 2 (TDHP2),
and the Optimal Combination (OC) approach.
The Mean Absolute Scaled Error (MASE) is em-
ployed as a metric to evaluate and compare
forecasting performance.

ETS

U

ETS-BU

ETS-TDFP

ETS-TDHP1

ETS-TDHP2

ETS-OC

Best Model

Figure 2. The Framework of the Proposed Study

Results and Discussion

Table 1 displays the outcomes of a simula-
tion study that evaluates the forecast accuracy
of different methods. Unlike previous studies

conducted by Hyndman et al. (2011) and Atha-
nasopoulos et al. (2009) that emphasized on
ETS-0C method, this study focuses on a new ap-
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proach called ARIMA-OC (ARIMA based on op- method with five different approaches. Table 1

timal combination approach) and examines its = shows that the mean MASE for ARIMA-OC is

performance using the MASE criterion. 0.87.To check that not all the mean of MASE for
The combination of the ARIMA forecasted ARIMA combining with five different ap-

method with five different approaches is supe- proaches are equal, see Table 2.

rior to the combination of the ETS forecasted

Table 1 Out-of-sample Forecasting performance

MASE Forecast Horizon (h—=month) Forecact method — ETS
Approach 1 2 3 4 5 6 7 8 9 10 11 12 Average
BU 0.97 0.97 0.69 0.68 0.90 8.34 0.81 0.81 | 1.26 | 0.91 1.01 1.01 | 1.53
TDFP 0.96 0.96 0.66 0.66 0.97 0.94 0.79 0.79 | 1.51 | 1.04 1.01 1.01 | 0.94
TDHP1 1.09 1.10 0.98 0.98 0.87 1.11 1.06 0.95 | 1.87 | 1.83 2.09 | 2.09 | 1.34
TDHP2 1.09 1.10 0.98 0.97 0.88 1.12 1.07 0.95 1.87 1.83 2.08 2.09 1.34

ocC 0.96 0.96 0.67 0.66 0.92 0.87 0.78 0.78 | 1.43 | 0.95 099 | 0,99 | 0,91
WLASIT Frorecast Hortzon (hmenth) Forecast method = ARTMA
Approach 1 2 3 4 5 6 7 8 9 10 11 12 Average
BU 0.98 0.98 0.69 0.67 0.77 0.98 0.81 0.8 0.95 | 0.92 0.99 | 099 | 0.88
TDFP 0.91 0.92 0.7 0.67 0.95 1.08 0.81 0.8 0.9 0.96 0.99 | 0.99 | 0.89
TDHP1 0.96 0.97 1 1.02 0.86 1.06 1.07 096 | 1.89 | 1.85 2.15 | 2.15 | 1.33
TDHP2 0.96 0.97 0.98 0.98 0.86 1.05 1.08 096 | 1.89 | 1.85 2.14 | 2.14 | 1.32
ocC 0.93 0.93 0.69 0.66 0.83 1 0.8 0.79 | 0.93 | 0.94 098 | 0.98 | 0.87

Note: ETS= Exponential Tail Smoothing model/ the state space model; ARIMA= autoregressive integrated
moving average; BU= The bottom-up approach; TDFP= Top-down approach based on forecasted propor-
tions.; TDHP1= Top-down approach based on historical proportions 1/ based on the average historical
proportions; TDHP2= Top-down approach based on historical proportions 2 /based on proportions of his-
torical averages.; OC= The optimal combination approach.

Table 2. Friedman Test (the Mean of MASE for ARIMA combining with five different approaches)

MASE (1) (2) 3 ) (5
Methods ARIMA- ARTMA- ARIMA- ARTMA- ARDVMA-
BU RANK | 7pFP e TDHPL RANK | Tpmp2 BEIE ) e BT
Forecast 1 0.08 3 0.01 1 0.96 35 0.96 35 0.93 2
Horizon _ _
(omontn) | 2 5.08 5 5.2 1 .97 35 007 35 003 7
3 0.69 1 0.7 3 1 3 0.08 3 0.69 1
3 0.67 23 0.67 23 102 5 0.08 3 0.66 1
5 0.7 1 0.95 5 0.86 35 0.86 35 0.83 2
5 0.08 1 108 5 1.06 3 105 3 1 2
7 0.61 23 0.61 23 107 3 1.08 5 03 1
5 08 73 08 23 096 3 006 5 0.79 1
5 5.05 3 5.9 1 1.80 15 180 15 0.03 2
T 0.1 1 0.96 3 185 15 183 45 0.04 2
1 0.00 23 0.00 23 715 5 714 3 0.08 1
) 0.09 13 0.09 23 215 5 214 3 0.08 1
Mean | 088 745 0.80 263 133 10 3] 304 057 15
(R2) (R3) (B5) (B4 (R1)

Note: R1= RANK 1 (ARIMA-OC); R2= RANK 2 (ARIMA-BU); R3=RANK 3 (ARIMA-TDFP); R4=RANK
4 (ARIMA- TDHP2); R5=RANK 5 (ARIMA-TDHP1).
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Table 2 employs non-parametric tests, spe-
cifically the Friedman Test and the Friedman
post-hoc test after Nemenyi, given that the data
is continuous, the samples are not normally
distributed, and there is no interaction

between blocks (rows) and treatment (col-
umns). Figure 3 displays the output, including
data and Hierarchy Forecasting results of
ARIMA-OC at all levels.

Level 0

Tofal

1200000 1200000 2400000
P

Level 1

1000000
L

400000
MR

o
L

0e+00 2e+05 4e+05 Be+0S5

Figure. 3. Hierarchy Forecasting results of ARIMA-OC across all level

The populations have approximately the
same shapes since the box-plots are all about

the same shape. The five box-plots each have
approximately the same shape.

]

o

'
-

.

'
S

T T
ARIMABU ARMA-TDFP

ARMA-TDHP1

T T T
ARMATOHP2 ARIMA-OC

Figure 4. The box-plots Mean MASE of ARIMA combines with five different approaches
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Differences of “the Mean MASE probably
explaining any differences in varia-
tion/spread”, show that: The mean MASE of
ARIMA-BU = 0.88; The mean MASE of ARIMA-
TDFP = 0.89; The mean MASE of ARIMA-
TDHP1 = 1.33; The mean MASE of ARIMA-
TDHP2 = 1.32 and The mean MASE of ARIMA-
0C=0.87. Abox-plot s also useful for assessing
differences.

The procedure for testing the Null Hypothesis

Hy =ty = Harss-rore = Harnsi-ronm = Harss-ronr2 = Harss-oc
versus

Table 4. The output of Nemenyi post-hoc test

H, = Not all the mean MASE of ARIMA,
combining with five different approaches are
equal. At 5 % level of significance, the test sta-
tistics for Friedman Test is 26.754. Since p -
value = 2.229x107° <0.05= ¢« (reject Ho ),
The results of the Friedman test indicate that
the ARIMA model, when combined with five
different approaches, produces significantly
different mean MASE values for the one-year
(12-month) ahead forecast.

According to the Nemenyi post-hoc test
for multiple joint samples, see the output of
Nemenyi post-hoc test in table 4,

ARIMA-  ARIMA- ARTMA-
METHODS BU TDFP TDFPI ‘"}%I}I‘EIP;
ARIMA-TDFP | 099960 - - -
ARTMA-TDFP1 | 003644 006225 - ;
ARIMA-TDHP? | 013728 0.20720 0.08576 -
ARIMA-OC 057250 044743 0.00015  0.00132

The treatment ARIMA-OC based on the
mean MASE differs highly significant (p < 0.05)
to ARIMA-TDHP1 and ARIMA-TDHP2, and the
treatment ARIMA-TDHP1 based on the mean
MASE differs highly significant (p < 0.05) to
ARIMA-BU. Other contrasts are not significant
(p > 0.05) for 1 year (12 months) ahead fore-
cast.

Conclusions

This study introduces a Hierarchical Fore-
casting technique for predicting tourist arri-
vals, specifically discussing a novel approach
called the ARIMA-OC (the ARIMA based on
Optimal Combination approach). Results from
a simulation study indicate that this method
outperforms other techniques. The validity of
Hierarchical Forecasting is confirmed
through non-parametric tests, such as the
Friedman Test and the Nemenyi post-hoc test.
Suggestions for future research include incor-
porating pandemic-related factors such as
Covid-19 as a dummy variable in tourism de-
mand studies using panel models, incorporat-
ing volatility in developing tourism demand

temporal Hierarchical Forecasting models for
predicting tourism demand.
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