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ABSTRAK 

 

The research explores the ARIMA-OC method (ARIMA based on the Optimal 

Combination approach) for Hierarchical Forecasting. In this approach, the 

ARIMA model is used to forecast each individual time series, and the Opti-

mal Combination (OC) technique is applied to merge these initial forecasts 

into an updated set of predictions. The study compares the ARIMA model 

with the Exponential Tail Smoothing (ETS) model, with both models being 

integrated using five different strategies: the Bottom-up approach (BU), the 

Top-down approach using Forecasted Proportion (TDFP), two Top-down 

approaches based on Historical Proportions (TDHP1 and TDHP2), and the 

Optimal Combination approach (OC). To assess how ARIMA-OC performs 

with small samples, a simulation was carried out, revealing that ARIMA-OC 

surpasses the other methods according to the MASE metric. Furthermore, 

non-parametric tests like the Friedman test and the Nemenyi post-hoc test 

were used to validate the effectiveness of Hierarchical Forecasting. 
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Introduction 
 Over the last forty years, the tourism sector 

has seen remarkable expansion and has gar-
nered considerable attention from both the 
business world and academic researchers 
(Waciko, K.J & Ismail, B, 2019). This growth has 
led to a heightened focus on modeling and fore-
casting tourism demand. The most widely used 
indicator of tourism demand is the count of 
tourist arrivals at a particular destination. Hi-
erarchical forecasting, an advanced forecasting 
technique, deals with a set of time series  

organized in a hierarchical manner. A consider-
able number of studies have utilized hierar-
chical forecasting, particularly in analyzing 
tourism demand. Hyndman et al. (2007) 
demonstrated that their optimal combination 
approach performed better than other existing 
methods for handling hierarchical data. Simi-
larly, Athanasopoulos and Hyndman (2007) 
demonstrated the value of hierarchical fore-
casting by generating extended forecasts for 
domestic tourism demand in Australia. 

http://dx.doi.org/10.11594/jesi.05.03.02
https://issn.lipi.go.id/terbit/detail/20210505211635058


Waciko et al., 2025 / Improving Hierarchical Tourism Forecasting through the ARIMA-OC (ARIMA Based on The Optimal Combination) Method 

 

 
JESI | Jurnal Ekonomi dan Statistik Indonesia 439 Volume 5 | Number 3 | December | 2025 

and handle credit risk more quickly and ac-
curately. The use of machine learning algo-
rithms enables faster and more precise deci-
sion-making. In a study conducted by 
Kosiorowski et al. (2017) in Poland’s Silesia re-
gion, a macro model was developed to assess 
air pollution during both day and night across 
five subregions. The researchers evaluated the 
effectiveness of hierarchical time series fore-
casting in enhancing local community welfare 
and introduced a new nonparametric, robust 
method for forecasting hierarchical functional 
time series. 

Athanasopoulos et al. (2017) presented the 
idea of Temporal Hierarchies for time series 
forecasting, which involves building a temporal 
hierarchy using non-overlapping time aggrega-
tions and merging forecasts from all levels to 
produce accurate and consistent results. In an-
other study, Mircetic et al. (2017) proposed a 
revised top-down approach for hierarchical 
forecasting within a beverage supply chain. 

Athanasopoulos et al. (2009) applied Hier-
archical Forecasting to the tourism sector, gen-
erating long-term forecasts for domestic tour-
ism demand in Australia. Their results aligned 
with those of Hyndman et al. (2011), who intro-
duced an optimal combination method that 
surpassed other hierarchical data techniques. 
Both studies exclusively used Exponential Tail 
Smoothing (ETS) with the optimal combination 
approach (ETS-OC), which proved more effec-
tive than alternative methods. 

Waciko and Ismail (2020) noted that ad-
vanced quantitative models have been widely 
developed in academic research. Both practi-
tioners and statisticians are interested in de-
signing advanced hybrid models to boost pre-
diction accuracy. However, there remains a 
need for dedicated research into the applica-
tion of hierarchical forecasting for tourist arri-
vals and the development of suitable test statis-
tics to confirm the effectiveness of hierarchical 
forecasting methods. 

 
Methods 

The time series  Itxt ,  is considered to 
follow an ARIMA(p,q) process, if it can be ex-
pressed as,

qtqtttptpttt xxxx −−−−−− ++++++++=  ...... 22112211
       (1)  

 

With ,0,0  qp  02  ,  p and q are 
called AR and MA orders, respectively. If tx  has 
a nonzero mean  ,  set )...1( 1 p −−−=  
and the model can be written as,     

qtqtttptpttt xxxx −−−−−− +++++++++=  ...... 22112211        (2)                          
 

where, the noise t  is assumed to be Gauss-
ian white noise with mean zero and variance 

2

 . the model is called AR(p) when 0=q  and 
the model is called MA(q) when 0=p   (Shum-
way and Stoffer, 2006). 

AR operator is defined to be  
p

p BBBB  −−−−= ...1)( 2

21                        (3) 
 
Is a polynomial in B of order p and  MA op-

erator is 
q

q BBBB  ++++= ...1)( 2

21            (4) 
 
Unlike AR process, MA process is stationary 

for any values of the parameters 
q ,...,, 21

. 
The ARMA(p,q) model in (5) can be written us-
ing the AR operator (3), and the MA operator 
(4) in a concise form as, 

tt BxB  )()( =                        (5)    
 
Box and Jenkins (1970) develop ARIMA 

models.  Many time series models such as AR, 
MA or ARMA cannot be specifically applied be-
cause of  non-stationary. To make them station-
ary, one possible way to treat the non-station-
ary series is to apply differencing.      The first 
differences, namely ( ) ttt xBxx )1(1 −=− − To 
offer second differences, and so on.  The d th 
differences can be written as  

t

d XB)1( − .  
If the original data series is differenced d 

times before applying an ARMA (p,q) model, 
then the resulting model for the undifferenced 
series is called an ARIMA (p,d,q) process where  
the letter “I” stands for integrated, and d indi-
cates the number of differences performed. 
Model (5) Model (5) can be extended as follows,                                     

 
  tt

d BxBB  )()1)(( =−                  (6)                                              
 
The combined AR operator is now 

dBB )1)(( − . Suppose substitute the operator 
B with a variable x in this expression, in that 
case, it can be immediately shown that the 
function  dxx )1)(( −  has d roots on the unit 
circle (as 0)1( =− x  when )1=x  suggesting 
that the mechanism is non-stationary, which is 
why differentiation is required.  
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In this research, a novel approach for hier-
archical time series forecasting called ARIMA-
OC (ARIMA based on the Optimal Combination 
method) was introduced. The ARIMA model (6) 
is applied to forecast each individual series, 
while the Optimal Combination technique is 
used to optimally merge these base forecasts, 
resulting in a set of updated forecasts. 

Suppose  )(ˆ
, hZ nX  

the generated h-step 
ahead forecasts for each individual series (us-
ing the ARIMA model) are represented as fol-
lows XZ  (ARIMA model)., )(ˆ

, hZ nAB  repre-
sents the h-step-ahead base forecast of series 
AB generated by the ARIMA model, 

ABZ  using 
the sample data 

nABAB ZZ ,1, ,...,  at level i. All h-
step ahead base forecasts are collectively de-
noted as )(ˆ

, hZ ni . 
 
These forecasts depend on 

the sample value for  nt ,...,2,1= , therefore 
correspond to predictions for time hn+ . The 
core idea of the Optimal Combination (OC) ap-
proach is to express these h-step-ahead base 
forecasts within a hierarchy using a linear re-
gression framework. 

hhn MhZ  +=)(ˆ                       (7) 
 
Where  nnKh ZZhZE ,...,)(ˆ

1,=  is the 
unknown mean of the base forecasts at the bot-
tom level is represented K , and h has zero 
mean and covariance matrix   hhV = . If h  
is known, the Generalized Least Squares (GLS) 
method can be used to obtain the minimum 
variance unbiased estimate  of       .h  Typically, 
this matrix is not known, but Hyndman et al. 
(2017) demonstrated that, under the reasona-
ble assumption that 

hKh M ,   where 
hK ,  

contains the forecast errors in the bottom level, 
the best linear unbiased estimator for h  is 

( ) ).(ˆˆ 1
hZMMM nh

=
−

  This leads to the re-
vised forecasts given by hn MhZ ̂)(

~
=

    
and  

This results in revised forecasts, which can be 
generally expressed as shown in equation (8), 
can written as,  

     )(ˆ)(
~

hZMPhZ nn =
                     (8)  

 
P varies depending on the hierarchical method 
used.

 
              MMMP = −1)(                                    (9) 
     The MASE is used as measures to compare 
forecast performance. 

𝑀𝐴𝑆𝐸 =
1

𝑛
∑  (

|𝑒𝑡|
1

𝑛−1
∑ |𝑍𝑡−𝑍𝑡−1|𝑛

𝑡=2

)𝑛
𝑡=1           (10)             

 
Where  𝑒𝑡 = 𝑍𝑡 − 𝑍̂𝑡 is the forecast error is 

represented as the difference between the ac-
tual value and the forecasted value, 𝑍𝑡 is the ac-
tual value, 𝑍̂𝑡 The forecast value and n refers to 
the length of the forecasting horizon or the size 
of the test set. (Waciko, K.J and Ismail, B, 2018).  
In this research, suitable statistical tests like 
the Friedman test and the Nemenyi post-hoc 
test (applied after the Friedman test) are used 
to validate the results of Hierarchical Forecast-
ing. Friedman test (Friedman, 1937, 1940) is an 
alternative to the one-way ANOVA with re-
peated measures.  Data should be at least an or-
dinal or continuous and samples are do not 
need to be normally distributed. The Friedman 
statistic S can be represented as, 

                        )1(3
)1(

12

1

2 +−








+
= 

=

knR
knk

n
S

k

j

j  

       (11) 

The procedure for testing the null hypothesis,   

kH  == ...: 10  

versus   

equal allnot  ,...,: 11 kH    

at the   level of significance, 
Reject 0H if sS  ;  
otherwise do not reject           (12) 

 
Where the constant s  is selected to create 

the type I error probability equal to .   For de-
tail see in Hollander and Wolfe (1999). 
     The Nemenyi post-hoc test, following the 
Friedman test, requires a balanced design

)....( 21 nnnn k ====
 
for each group k and 

  Friedman-type ranking of the data. The ine-
quality applied in this study was derived from 
Nemenyi (1969), where the critical difference 
represents the difference between the mean 
rank sums :)( ji RR −  

n

kkq
RR

k

ji
6

)1(

2

;; +
−

         (13)                         

This inequality results in the same critical 
differences for the rank sums )( ji RR − when 
it is multiplied with n  for .05.0=  



Waciko et al., 2025 / Improving Hierarchical Tourism Forecasting through the ARIMA-OC (ARIMA Based on The Optimal Combination) Method 

 

 
JESI | Jurnal Ekonomi dan Statistik Indonesia 441 Volume 5 | Number 3 | December | 2025 

This research examines hierarchical time 
series methods applied to international tourist 
arrivals in Indonesia. The data consists of 
monthly records of tourist arrivals for each se-
ries, covering the period from January 2014 to 
December 2018. The data was obtained from 

the Ministry of Tourism of the Republic of Indo-
nesia (www.kemenparekraf.go.id). Within a hi-
erarchy, data and forecasts are organized by 
breaking down the information for various ge-
ographical regions and provinces.

 
 

 
 
 
 
 
 
 
 
 
 

Figure. 1 A Hierarchical Time Series Tourist Arrival in Indonesia 
 

Figure 1 illustrates level2−=K hierarchy 
structure. At the highest level (level 0) is the 
“Total,” representing the most aggregated data. 
This total is divided into two series at level 1, 
and each of these series is further subdivided 
into two additional series at the lowest level. 
 
Nomenclature for Hierarchical Time Series 
Tourist Arrival in Indonesia 
Total = Disaggregated data of International 
Tourist arrival to Indonesia. 
A= Series A-level 1 (Bali & Nusa Tenggara Re-
gion) 
B= Series B-level 1 (Sumatra Region). 
C= Series C-level 1 (Java Region). 
D= Series D-level 1 (Kalimantan Region). 
E= Series E-level 1 (Sulawesi Region). 
F= Series F-level 1 (Maluku & Papua Region). 
AA= Series A-level 2 within series A-level 1 

(Province of Bali). 
AB= refers to Series B-level 2, which is a subdi-

vision of Series A-level 1 (all province in 
Bali & Nusa Tenggara Region excluding the 
province of Bali). 

BA= refers to Series A-level 2, which is a subdi-
vision of Series B-level 1 (Province of 
Kepulauan Riau). 

BB= refers to Series B-level 2, which is a subdi-
vision of Series B-level 1 (all province in 
Sumatra Region excluding the province of 
Kepulauan Riau). 

CA= refers to Series C-level 2, which is a subdi-
vision of Series A-level 1 (Province of East 
Java).  

CB= refers to Series B-level 2, which is a subdi-
vision of Series C-level 1 (all province in 
Java Region excluding Province of East 
Java). 

DA= refers to Series D-level 2, which is a subdi-
vision of Series D-level 1 (Province of West 
Kalimantan). 

DB= refers to Series B-level 2, which is a subdi-
vision of Series D-level 1 (all Province in 
Kalimantan Region excluding the province 
of West Kalimantan). 

EA= refers to Series A-level 2, which is a subdi-
vision of Series E-level 1 (Province of 
North Sulawesi). 

EB= refers to Series B-level 2, which is a subdi-
vision of Series E-level 1 (all province in 
Sulawesi Region excluding province of 
North Sulawesi). 

FA= refers to Series A-level 2, which is a subdi-
vision of Series F-level 1 (Province of Ma-
luku).  

FB= refers to Series B-level 2, which is a subdi-
vision of Series F-level 1 (all province in 
Maluku & Papua Region excluding Province 
of Maluku) 

n = Total number of series in the hierarchy; 

tZ = The t th observation for “Total” series for t 
= 1,…,T;  

http://www.kemenparekraf.go.id/
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𝑍𝑡   = vector of all observations at time t;  
=tjZ ,

The t th observation of the series corre-
sponds to and j represents a specific ele-
ment within the hierarchical tree. For In-
stance, 

tAZ ,
 denotes the t th observation of 

the series associated with node A at level 
1, 

tABZ ,
 while denotes the t th observation 

of the series linked to node AB at level 2, 
and forth. 

 
At any given time t, the values at the lowest 

level of the hierarchy add up to the value of 
the series at the level above. For example, as 
shown in,  

tFBtFAtEBtEAtDBtDAtCBtCAtBBtBAtABtAAt ZZZZZZZZZZZZZ ,,,,,,,,,,,, +++++++++++=  
Where, 

 
;,,, tABtAAtA ZZZ +=

      
;,,, tBBtBAtB ZZZ +=

     
   

tCBtCAtC ZZZ ,,, +=
;   

tDBtDAtD ZZZ ,,, +=
;       

;,,, tEBtEAtE ZZZ +=
   
;,,, tFBtFAtF ZZZ +=

 
 
Thus, it can be written as,  

   
tFtEtDtCtBtAt ZZZZZZZ ,,,,,, +++++=  

This relationship can be expressed using ma-
trix notation.  

 

                                                   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 presents the framework of the pro-

posed study, which begins by comparing the 
ARIMA model with the Exponential Tail 
Smoothing (ETS) model. Both models are then 
combined with five different hierarchical fore-
casting approaches: the Bottom-Up (BU) ap-
proach, the Top-Down approach based on 
Forecasted Proportions (TDFP), the Top-Down 
approach using Average Historical Proportions 
or Historical Proportion 1 (TDHP1), the Top-
Down approach using Proportions of Historical 
Averages or Historical Proportion 2 (TDHP2), 
and the Optimal Combination (OC) approach. 
The Mean Absolute Scaled Error (MASE) is em-
ployed as a metric to evaluate and compare 
forecasting performance.

 
 

 

 

 

 

 

 

 
Figure 2. The Framework of the Proposed Study 

 
Results and Discussion 

Table 1 displays the outcomes of a simula-
tion study that evaluates the forecast accuracy 
of different methods. Unlike previous studies 

conducted by Hyndman et al. (2011) and Atha-
nasopoulos et al. (2009) that emphasized on 
ETS-OC method, this study focuses on a new ap-



Waciko et al., 2025 / Improving Hierarchical Tourism Forecasting through the ARIMA-OC (ARIMA Based on The Optimal Combination) Method 

 

 
JESI | Jurnal Ekonomi dan Statistik Indonesia 443 Volume 5 | Number 3 | December | 2025 

proach called ARIMA-OC (ARIMA based on op-
timal combination approach) and examines its 
performance using the MASE criterion.  

The combination of the ARIMA forecasted 
method with five different approaches is supe-
rior to the combination of the ETS forecasted 

method with five different approaches. Table 1 
shows that the mean MASE for ARIMA-OC is 
0.87. To check that not all the mean of MASE for 
ARIMA combining with five different ap-
proaches are equal, see Table 2.

 
Table 1 Out-of-sample Forecasting performance 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: ETS= Exponential  Tail  Smoothing model/ the state space model; ARIMA= autoregressive integrated 

moving average; BU= The bottom-up approach; TDFP= Top-down approach based on forecasted  propor-

tions.; TDHP1= Top-down   approach  based on historical proportions 1/ based on the average  historical 

proportions; TDHP2= Top-down  approach  based on historical proportions 2/based on proportions of  his-

torical   averages.; OC=  The optimal combination  approach. 

 
Table 2. Friedman Test (the Mean of MASE for ARIMA combining with five different approaches) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note: R1= RANK 1 (ARIMA-OC);   R2= RANK 2 (ARIMA-BU);    R3=RANK 3 (ARIMA-TDFP);   R4=RANK 

4 (ARIMA- TDHP2); R5=RANK 5 (ARIMA-TDHP1). 
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Table 2 employs non-parametric tests, spe-
cifically the Friedman Test and the Friedman 
post-hoc test after Nemenyi, given that the data 
is continuous, the samples are not normally 
distributed, and there is no interaction  

between blocks (rows) and treatment (col-
umns). Figure 3 displays the output, including 
data and Hierarchy Forecasting results of 
ARIMA-OC at all levels.

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 3. Hierarchy Forecasting results of ARIMA-OC across all level 
 
The populations have approximately the 

same shapes since the box-plots are all about 
the same shape. The five box-plots each have 
approximately the same shape.

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The box-plots Mean MASE of ARIMA combines with   five different approaches 
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Differences of “the Mean MASE probably 
explaining any differences in varia-
tion/spread”,  show that: The mean MASE of 
ARIMA-BU = 0.88; The mean MASE of ARIMA-
TDFP = 0.89; The mean MASE  of ARIMA-
TDHP1 = 1.33;  The mean  MASE of ARIMA-
TDHP2 = 1.32 and The mean MASE of ARIMA-
OC = 0.87. A box-plot is also useful for assessing 
differences.  
The procedure for testing the Null Hypothesis 
 

OCARIMATDHPARIMATDHPARIMATDFPARIMABUARIMAH −−−−− =====  210  
  
versus                

=1H Not all the mean MASE of ARIMA, 
combining with five different approaches are 
equal. At 5 % level of significance, the test sta-
tistics for Friedman Test is 26.754. Since  -
value  =   2.229 510− = 05.0  (reject H0 ), 
The results of the Friedman test indicate that 
the ARIMA model, when combined with five 
different approaches, produces significantly 
different mean MASE values for the one-year 
(12-month) ahead forecast. 

     According to the Nemenyi post-hoc test 
for multiple joint samples, see the output of 
Nemenyi post-hoc test in table 4,

 
Table 4.  The output of Nemenyi post-hoc test 
 
 
 
 
 
 
 
 

 
The treatment ARIMA-OC based on the 

mean MASE differs highly significant (p < 0.05) 
to ARIMA-TDHP1 and ARIMA-TDHP2, and the 
treatment ARIMA-TDHP1 based on the mean 
MASE differs highly significant (p < 0.05) to 
ARIMA-BU. Other contrasts are not significant 
(p > 0.05) for 1 year (12 months) ahead fore-
cast. 
 
Conclusions 

This study introduces a Hierarchical Fore-
casting technique for predicting tourist arri-
vals, specifically discussing a novel approach 
called the ARIMA-OC (the ARIMA based on 
Optimal Combination approach). Results from 
a simulation study indicate that this method 
outperforms other techniques. The validity of 
Hierarchical Forecasting is confirmed 
through non-parametric tests, such as the 
Friedman Test and the Nemenyi post-hoc test. 
Suggestions for future research include incor-
porating pandemic-related factors such as 
Covid-19 as a dummy variable in tourism de-
mand studies using panel models, incorporat-
ing volatility in developing tourism demand 
forecasting models, and exploring the use of 

temporal Hierarchical Forecasting models for 
predicting tourism demand. 
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